GB Tools, Models, & Software that you can Download:


The Spiking Neural Mark-up Language (SpineML) is a declarative XML based model description language for large scale neural network models. Learn more at the SpineML Homepage:


GeNN is a GPU enhanced Neuronal Network simulation environment based on NVIDIA CUDA technology. Learn more at the GeNN Homepage:

Corridor Centring Model

Below are instructions for obtaining and running the Corridor Centring Model. There are three experiments included, and there is some set up work to configure each. The model can be run on Linux or OSX.

First, download the zip file from here, and unzip it.

Second install Qt 5 and download the simulated environment (beeworld) from the GitHub repository. You’ll also need scipy.

Third, run QtCreator, load the .pro file and use the default build options, then build the beeworld. Copy the beeworld2 binary (if on Mac you need the one ”inside” the .app package (right click and select ‘show package contents’ to get it). Then replace the beeworld2 file from the zip you downloaded (it is compiled for Mac, but almost certainly won’t work on your computer).

Fourth, install SpineML_2_BRAHMS and BRAHMS as described here. Note the installation locations (on Mac the installation locations are ”inside” the .app package,right click and select ‘show package contents’)

Fifth. The zip contains three directories beginning ‘Paper’ – these are the experiments. The cc_XXXX_model directories are the SpineML models. You now need to configure each experiment for your system – replace the SML_2_B_dir, SML_dir and Model_dir variables in and with the SpineML_2_BRAHMS, SystemML and model directories on your system, respectively.

Sixth, run
python && python

You will get a labelled graph of the model output when the batch run is complete.

Central Complex Model

The central complex model presented here is described in the PLOS One paper: A Computational Model of the Integration of Landmarks and Motion in the Insect Central Complex. The model along with the data used to create the Figures and the analysis scripts used can be found on Github:

A video of the model in action can be found on YouTube: